Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the nonspinning case
نویسندگان
چکیده
We study the horizon absorption of gravitational waves in coalescing, circularized, nonspinning blackhole binaries. The horizon-absorbed fluxes of a binary with a large mass ratio (q 1⁄4 1000) obtained by numerical perturbative simulations are compared with an analytical, effective-one-body (EOB) resummed expression recently proposed. The perturbative method employs an analytical, linear in the mass ratio, EOB-resummed radiation reaction, and the Regge-Wheeler-Zerilli formalism for wave extraction. Hyperboloidal layers are employed for the numerical solution of the Regge-Wheeler-Zerilli equations to accurately compute horizon fluxes up to the late plunge phase. The horizon fluxes from perturbative simulations and the EOB-resummed expression agree at the level of a few percent down to the late plunge. An upgrade of the EOB model for nonspinning binaries that includes horizon absorption of angular momentum as an additional term in the resummed radiation reaction is then discussed. The effect of this term on the waveform phasing for binaries with mass ratios spanning 1–1000 is investigated. We confirm that for comparable and intermediate-mass-ratio binaries horizon absorption is practically negligible for detection with advanced LIGO and the Einstein Telescope (faithfulness 0:997).
منابع مشابه
A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime
We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the code Te...
متن کاملEffects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binarie...
متن کاملQuasiequilibrium sequences of black-hole–neutron-star binaries in general relativity
We construct quasiequilibrium sequences of black hole-neutron star binaries for arbitrary mass ratios by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition. We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics, and account for the black hole by imposing equilibrium boundary conditions on the s...
متن کاملPost-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function
We present a method of post-Newtonian expansion to solve the homogeneous Regge-Wheeler equation which describes gravitational waves on the Schwarzschild spacetime. The advantage of our method is that it allows a systematic iterative analysis of the solution. Then we obtain the Regge-Wheeler function which is purely ingoing at the horizon in closed analytic form, with accuracy required to determ...
متن کاملTitle of dissertation: IMPROVING ANALYTICAL TEMPLATES AND SEARCHING FOR GRAVITATIONAL WAVES FROM COALESCING BLACK HOLE BINARIES
Title of dissertation: IMPROVING ANALYTICAL TEMPLATES AND SEARCHING FOR GRAVITATIONAL WAVES FROM COALESCING BLACK HOLE BINARIES Evan Ochsner Doctor of Philosphy, 2010 Dissertation directed by: Professor Alessandra Buonanno Department of Physics The Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo are taking data at design sensitivity. They will be upgraded to Advanced LIGO a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012